数学建模论文写作
一、写好数模答卷的重要性
1. 评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。
2. 答卷是竞赛活动的成绩结晶的书面形式。
3. 写好答卷的训练,是科技写作的一种基本训练。
二、答卷的基本内容,需要重视的问题
1.评阅原则
假设的合理性,建模的创造性,结果的合理性,表述的清晰程度。
2.答卷的文章结构
题目(写出较确切的题目;同时要有新意、醒目)
摘要(200-300字,包括模型的主要特点、建模方法和主要结论)
关键词(求解问题、使用的方法中的重要术语)
1)问题重述。
2)问题分析。
3)模型假设。
4)符号说明。
5)模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)。
6)模型求解(计算方法设计或选择;算法设计或选择,算法思想依据,步骤及实现,计算框图;所采用的软件名称;引用或建立必要的数学命题和定理;求解方案及流程。)
7)进一步讨论(结果表示、分析与检验,误差分析,模型检验)
8)模型评价(特点,优缺点,改进方法,推广。)
9)参考文献。
10)附录(计算程序,框图;各种求解演算过程,计算中间结果;各种图形,表格。)
3. 要重视的问题
1)摘要。
包括:
a. 模型的数学归类(在数学上属于什么类型);
b. 建模的思想(思路);
c. 算法思想(求解思路);
d. 建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验……);
e. 主要结果(数值结果,结论;回答题目所问的全部“问题”)。
▲ 注意表述:准确、简明、条理清晰、合乎语法、要求符合文章格式。务必认真校对。
2)问题重述。
3)问题分析。
因素之间的关系、因素与环境之间的关系、因素自身的变化规律、确定研究的方法或模型的类型。
5)模型假设。
根据全国组委会确定的评阅原则,基本假设的合理性很重要。
a. 根据题目中条件作出假设
b. 根据题目中要求作出假设
关键性假设不能缺;假设要切合题意。
6) 模型的建立。
a. 基本模型:
ⅰ)首先要有数学模型:数学公式、方案等;
ⅱ)基本模型,要求完整,正确,简明;
b. 简化模型:
ⅰ)要明确说明简化思想,依据等;
ⅱ)简化后模型,尽可能完整给出;
c. 模型要实用,有效,以解决问题有效为原则。
数学建模面临的、要解决的是实际问题,不追求数学上的高(级)、深(刻)、难(度大)。
ⅰ)能用初等方法解决的、就不用高级方法;
ⅱ)能用简单方法解决的,就不用复杂方法;
ⅲ)能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。
d.鼓励创新,但要切实,不要离题搞标新立异。数模创新可出现在:
▲ 建模中,模型本身,简化的好方法、好策略等;
▲ 模型求解中;
▲ 结果表示、分析、检验,模型检验;
▲ 推广部分。
e.在问题分析推导过程中,需要注意的问题:
ⅰ)分析:中肯、确切;
ⅱ)术语:专业、内行;
ⅲ)原理、依据:正确、明确;
ⅳ)表述:简明,关键步骤要列出;
ⅴ)忌:外行话,专业术语不明确,表述混乱,冗长。
7)模型求解。
a. 需要建立数学命题时:
命题叙述要符合数学命题的表述规范,尽可能论证严密。
b. 需要说明计算方法或算法的原理、思想、依据、步骤。
若采用现有软件,说明采用此软件的理由,软件名称。
c. 计算过程,中间结果可要可不要的,不要列出。
d. 设法算出合理的数值结果。
8) 结果分析、检验;模型检验及模型修正;结果表示。
a. 最终数值结果的正确性或合理性是第一位的;
b. 对数值结果或模拟结果进行必要的检验;
结果不正确、不合理、或误差大时,分析原因, 对算法、计算方法、或模型进行修正、改进。
c. 题目中要求回答的问题,数值结果,结论,须一一列出;
d. 列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据;
e. 结果表示:要集中,一目了然,直观,便于比较分析。
▲ 数值结果表示:精心设计表格;可能的话,用图形图表形式。
▲ 求解方案,用图示更好。
9)必要时对问题解答,作定性或规律性的讨论。最后结论要明确。
10)模型评价
优点突出,缺点不回避。
改变原题要求,重新建模可在此做。
推广或改进方向时,不要玩弄新数学术语。
11)参考文献
12)附录
详细的结果,详细的数据表格,可在此列出,但不要错,错的宁可不列。主要结果数据,应在正文中列出,不怕重复。
检查答卷的主要三点,把三关:
a. 模型的正确性、合理性、创新性
b. 结果的正确性、合理性
c. 文字表述清晰,分析精辟,摘要精彩
三、关于写答卷前的思考和工作规划
答卷需要回答哪几个问题――建模需要解决哪几个问题;
问题以怎样的方式回答――结果以怎样的形式表示;
每个问题要列出哪些关键数据――建模要计算哪些关键数据;
每个量,列出一组还是多组数――要计算一组还是多组数。
四、答卷要求的原理
1. 准确――科学性;
2. 条理――逻辑性;
3. 简洁――数学美;
4. 创新――研究、应用目标之一,人才培养需要;
5. 实用――建模、实际问题要求。
五、建模理念
1. 应用意识
要解决实际问题,结果、结论要符合实际;
模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。
2. 数学建模
用数学方法解决问题,要有数学模型;
问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。
3. 创新意识
建模有特点,更加合理、科学、有效、符合实际;更有普遍应用意义;不单纯为创新而创新。
衡量一个赛程优劣,除各队每两场比赛间相隔场次数上限d这个指标外,各队在整个赛程中总间隔场次数e的差异程度E也是一个重要的指标。可设E=Emax-Emin,E越大说明各队总体休整间隔数的差异大。见表2、表3,分别是n=8,n=9的满足d=[(n-3)/2]的赛程,n=8的此赛程E=19-17=2;n=9的赛程E=28-21=7。这里n=8的赛程中差异度较小,表现出各队总体休整时间较为均匀,因而此赛程就指标而言,也较为公平的,n=9的赛程中差异度较大,因而此赛程仍有不公平性。
此外,除了每两场比赛间相隔场次数外,各队比赛之前的休息时间,即首轮比赛的出场次序,对比赛的成绩仍有一定的影响,(如在首轮中靠后面比赛可减少旅途劳累,可先观察各队情况等等)。如表2中,4队、5队首轮最后比赛,表3中,9队首轮最后比赛。实际中此因素无法解决,常采取抽签的方法来决定首轮的出场次序。
关于赛程的优劣,除考虑公平性外,还有效率性问题,即考虑如何合理紧凑地安排赛程,使赛程的从时间较短。
6.模型评价
6.1 本模型的结果成功地给出了同一场地单循环赛各队每两场比赛中间相隔场次数上限的计算公式,有一定的理论意义与实际意义。
6.2关于同一场地单循环赛赛程编派法,至今实际中都采用“循环规则”,(见上文n为偶数编派法),通过我们的研究发现此规则虽然简易、对于n为偶数的赛程,符合d=[(n-3)/2],从而有公平性,对于n为奇数,编派的赛程d[(n-3)/2],有失公平性。表4是用实际方法对n=7编制的赛程(首轮1队轮空,1队不动)。其弊端是此赛程d=1,而按公式d=[(n-3)/2]=2。说明各队每两场比赛中间极不均等,如有间隔6场,有间隔1场,具体到一个队(如5队比赛与休整时间极不均等)。从比赛与休整的节奏,第一队最有利,第五队最不利,另外从各队总间隔场次数看,也有较大差异,说明实际赛程编制法有待改进。而本模型算法提出的“生成规则”(见上文n为奇数编派法)既简便又公平。
东区15支 西区15支常规赛:一支球队要跟同区的每一支球队各打4场比赛(两场主场、两场客场)和不同区的每支球队各打两场比赛(一场主场、一场客场)。这样下来每一支球队在常规赛都要打八十二场比赛。顺便把算法写出来:一个区的比赛总场数:15× 14×(4+2)-30=1230(场) 一个区的球队总数为15个 每只球队一个赛季的比赛场数就为:1230/15=82(场)
常规赛打完,每个赛区战绩排在前八名的进入季后赛。赛区的第一名对第八名、第二名对第七名、第三名对第六名、第四名对第五名。季后赛是打淘汰制比赛,每轮比赛是七场四胜制
最终决出赛区第一名。两个赛区的第一名争夺总冠军
数学应用是数学 教育 的重要内容,呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识。下面是我为大家推荐的数学建模论文,供大家参考。
数学建模论文 范文 一:建模在高等数学教学中的作用及其具体运用
一、高等数学教学的现状
(一) 教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及 逻辑思维 能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二) 教学 方法 传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的 想象力 、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体 措施
(一) 在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二) 讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三) 组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
参考文献
[1] 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想[J]. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.
[2] 李薇. 在高等数学教学中融入数学建模思想的探索与实践[J]. 教育实践与改革,2012 ( 04) : 177 -178,189.
[3] 杨四香. 浅析高等数学教学中数学建模思想的渗透 [J].长春教育学院学报,2014 ( 30) : 89,95.
[4] 刘合财. 在高等数学教学中融入数学建模思想 [J]. 贵阳学院学报,2013 ( 03) : 63 -65.
数学建模论文范文二:数学建模教学中数学素养和创新意识的培养
前言
创新人才的培养是新的时代对高等教育提出的新要求.培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力.
因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1].
在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养.尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力.
而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践.
近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效.数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2].
所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程.数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程.
因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3-7].
因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点.现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中 总结 的几点看法.
1掌握数学语言独有的特点和表达形式
准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法.
用数学语言进行交流和良好的符号意识是重要的数学素质.数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的.能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式.数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征.
现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型.通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决.
2借助数学建模教学使学生学会使用数学语言构建数学模型
根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、 抽象思维 、逻辑推理和表达能力,提高学生的数学素质和数学能力.在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强.在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力.
而在学生的书面作业或论文 报告 中,注意培养学生数学语言表达的规范性.书面表达是数学语言表达能力的一种重要形式.通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成.在书面表达上,主要应做到思维清晰、叙述简洁、书写规范.例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.
对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正.
3借助数学实验教学,展示高度抽象
的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍.由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力.
因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程.优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍.实验课的地位要给予应有的重视.我院现存的一个重要表现就是实验设备不足,实验室开放时间不够.为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室.
配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备.精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神.在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计.要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则.
选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解.熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化 创新思维 的开发.
教学方法上实行启发参与式教学法:启发-参与-诱导-提高.充分发挥学生主体作用,以学生亲自动脑动手为主.
教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高.数学实验是一门强调实践、强调应用的课程.
数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程.在这一教学活动中,通过数学软件如MAT-LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程.
4突出学生的主体作用,循序渐进培养学生学习、实践到创新
实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力.
在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者.
再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力.
同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力.一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标.数学建模与数学实验课程通过实际问题---方法与分析---范例---软件---实验---综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法.
通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法.通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养.实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用.
5具体的教学策略和途径
数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:
1)注重背景的阐述
让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提.再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣.
2)注重模型建立与求解过程中的数学语言的使用
在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显.基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决.在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正.
3)注重经典算法的数学软件的实现和改进
由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺.只有不断的学习和总结,才有数学素养的培养和创新能力的提高.
参考文献:
[1]叶其孝.把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J].工程数学学报,2003,(8):1-11.
[2]颜荣芳,张贵仓,李永祥.现代信息技术支持的数学建模创新教育[J].电化教育研究,2009,(3)。
[3]郑毓信.数学方法论的理论与实践[M].广西教育出版社,2009.
[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,(5):613-617.
[5]姜启源,谢金星,叶俊.数学建模[M].第3版.北京:高等教育出版社,2002.
[6]周家全,陈功平.论数学建模教学活动与数学素质的培养[J].中山大学学报,2002,(4):79-80.
[7]付桐林.数学建模教学与创新能力培养[J].教育导刊,2010,(08):89-90.
随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,
数学建模全国优秀论文1:《浅谈数学建模 教育 的作用与开展策略》
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。
一、数学建模的含义及特点
数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。
1.准备阶段
主要分析问题背景,已知条件,建模目的等问题。
2.假设阶段
做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3.建立阶段
从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4.求解阶段
对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5.验证阶段
用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
二、加强数学建模教育的作用和意义
(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质
数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。
(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力
数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。
(三)加强数学建模教育有助于培养学生的创造性思维和创新能力
所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。
很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].
(四)加强数学建模教育有助于提高学生科技论文的撰写能力
数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。
(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].
三、开展数学建模教育及活动的具体途径和有效方法
(一)开展数学建模课堂教学
即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:
案例的选取和课堂教学的组织。
教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。
1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。
2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。
3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。
案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].
(二)开展数模竞赛的专题培训指导工作
建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。
(三)建立数学建模网络课程
以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]
(四)开展校内数学建模竞赛活动
完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。
如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。
(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛
全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。
四、结束语
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。
参考文献:
[1]辞海[M].上海辞书出版社,2002,1:237.
[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.
[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.
[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.
[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.
[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.
数学建模全国优秀论文2:《试论小学数学教学中数学建模的运用》
大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。
对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。
一、数学建模的概念
想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。
二、在小学数学教学中运用数学建模的策略
1.根据事物之间的共性进行数学建模
想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。
教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。
2.认识建模思想的本质
建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。
建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。
3.发挥教材在数学建模上的作用
教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。
数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。
数学建模的常见方法
1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。
3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。
4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。
Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。
5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。
6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。
7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。
8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司A.K.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。
9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。
10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈(H.W.Kuhn) 和托克 (A.W.Tucker) 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。
数学建模全国优秀论文相关 文章 :
★ 数学建模全国优秀论文范文
★ 2017年全国数学建模大赛获奖优秀论文
★ 数学建模竞赛获奖论文范文
★ 小学数学建模的优秀论文范文
★ 初中数学建模论文范文
★ 学习数学建模心得体会3篇
★ 数学建模论文优秀范文
★ 大学生数学建模论文范文(2)
★ 数学建模获奖论文模板范文
★ 大学生数学建模论文范文
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
数学建模论文范文一篇,带例题,结构格式要求有摘要、关键词、问题背景、建模过程、模型解释、小结、参考文献
;bs=site%3Adisio.cn+%C2%DB%CE%C4ch=w.ufnum=10w=site%3Adisio.cn+%C2%DB%CE%C4
点一下就可以进去了,
希望你早日完成论文。
祝你顺利
资料什么的都有,论文相关的。
加油!
这是07年数模比赛获奖的:
乘公交 看奥运
二 符号说明
:第i条公汽线路标号,i=1,2 …10400,当 时, 表示上行公汽路线, 当 时, 表示与上行路线 相对应的下行公汽路线;
:经过第i条公汽路线的第g个公汽站点标号;
:第j条地铁路线标号, j=1,2;
:经过第j条地铁线路的第h个地铁站点标号;
:转乘n次的路线;
:选择第k种路线的总时间;
:选择第k种路线公汽换乘公汽的换乘次数;
:选择第k种路线地铁换乘地铁的换乘次数;
:选择第k种路线地铁换乘公汽的换乘次数;
:选择第k种路线公汽换乘地铁的换乘次数;
:第k种路线、乘坐第m辆公汽的计费方式,其中:
表示实行单一票价, 表示实行分段计价;
:第k种路线,乘坐第m辆公汽的费用;
:选择第k种路线的总费用;
:选择第k种路线,乘坐第m辆公汽需要经过的公汽站个点数;
:选择第k种路线,乘坐第n路地铁需要经过的地铁站个点数;
:表示对于第k种路线的第m路公汽的路线是否选择步行, 为0-1变量, 表示不选择步行, 表示选择步行;
:对于第k种路线的第n路地铁的路线是否选择步行, 为0-1变量, 表示不选择步行, 表示选择步行;
三 模型假设
3.1基本假设
1、相邻公汽站平均行驶时间(包括停站时间): 3分钟
2、相邻地铁站平均行驶时间(包括停站时间): 2.5分钟
3、公汽换乘公汽平均耗时:5分钟(其中步行时间2分钟)
4、地铁换乘地铁平均耗时:4分钟(其中步行时间2分钟)
5、地铁换乘公汽平均耗时:7分钟(其中步行时间4分钟)
6、公汽换乘地铁平均耗时:6分钟(其中步行时间4分钟)
7、公汽票价:分为单一票价与分段计价两种;
单一票价:1元
其中分段计价的票价为:0 ~20站:1元
21~40站:2元
40站以上:3元
8、地铁票价:3元(无论地铁线路间是否换乘)
9、假设同一地铁站对应的任意两个公汽站之间可以通过地铁站换乘,且无需支付地铁费
3.2 其它假设
10、查询者转乘公交的次数不超过两次;
11、所有环行公交线路都是双向的;
12、地铁线T2也是双向环行的;
13、各公交车都运行正常,不会发生堵车现象;
14、公交、列车均到站停车
四 问题的分析
在北京举行奥运会期间,公众如何在众多的交通路线中选择最优乘车路线或转乘路线去看奥运,这是我们要解决的核心问题。针对此问题,我们考虑从公交线路的角度来寻求最优线路。首先找出过任意两站点(公众所在地与奥运场地)的所有路线,将其存储起来,形成数据文件。这些路线可能包含有直达公交线路,也有可能是两条公交线路通过交汇而形成的(此时需要转乘公交一次),甚至更多公交线路交汇而成。然后在这些可行路线中搜寻最优路线。
对于路线的评价,我们可以分别以总行程时间,总转乘次数,总费用为指标,也可以将三种指标标准化后赋以不同权值形成一个综合指标。而最优路线则应是总行程时间最短,总费用最少或总转乘次数最少,或者三者皆有之。之所以这样考虑目标,是因为对于不同年龄阶段的查询者,他们追求的目标会有所不同,比如青年人比较热衷于比赛,因而他们会选择最短时间内到达奥运赛场观看比赛。而中年人则可能较倾向于综合指标最小,即较快、较省,转乘次数又不多。老年人总愿意以最省的方式看到奥运比赛。而对于残疾人士则总转乘次数最少为好。
不同的路线查询需求用图4.1表示如下:
图4.1 公交线路查询目标图
经分析,本问题的解决归结为一个求最短路径的问题,但是传统的Dijkstra最短路径算法并不适用于本问题,因为Dijkstra算法采用的存储结构和计算方法难以应付公交线路网络拓扑的复杂性,而且由于执行效率的问题,其很难满足实时系统对时间的严格要求。
为此我们在实际求解的过程中,采用了效率高效得广度优先算法,其基本思路是每次搜索指定点,并将其所有未访问过的近邻点加入搜索队列,循环搜索过程直到队列为空。此方法在后文中有详细说明。
五 建模前的准备
为了后面建模与程序设计的方便,在建立此模型前,我们有必要做一些准备工作。
5.1数据的存储
由于所给的数据格式不是很规范,我们需要将其处理成我们需要的数据存储格式。从所给文件中读出线路上的站点信息,存入txt文档中,其存储格式为:两行数据,第一行表示上行线上的站点信息,第二行表示下行线的站点信息,其中下行路线标号需要在原标号的基础上加上520,用以区分上行线和下行线。
如果上行线与下行线的站点名不完全相同,那么存储的两行数据相应的不完全相同,以公交线L009为例:
L009:3739 0359 1477 2159 2377 2211 2482 2480 3439 1920 1921 0180 2020 3027 2981
L529:2981 3027 2020 0180 1921 1920 3439 3440 2482 2211 2377 2159 1478 0359 3739
L529为L009所对应的下行线路。
如果下行线是上行线原路返回,那么存储的两行数据中的站点信息刚好顺序颠倒,以公交线路L001为例:
L001:0619 1914 0388 0348 0392 0429 0436 3885 3612 0819 3524 0820 3914 0128 0710
L521:0710 0128 3914 0820 3524 0819 3612 3885 0436 0429 0392 0348 0388 1914 0619
如果是环线的情况(如图5.1所示),则可以等效为两条线路:
顺时针方向:S1→S2→S3→S4→S1→S2→S3→S4;
逆时针方向:S1→S4→S3→S2→S1→S4→S3→S2。
经过分析,此两条”单行路线”线路的作用等同于原环形路线
图5.1 环行线路示意图
以环形公交线L158为例,此环形路线存储数据如下:
L153: 534 649 2355 1212 812 171 170 811 2600 172 1585 814 264 3513 1215 1217 251 2604 2606 534 649 2355 1212 812 171 170 811 2600 172 1585 814 264 3513 1215 1217 251 2604 2606
L673: 534 2606 2604 251 1217 1215 3513 264 814 1585 172 2600 811 170 171 812 1212 2355 649 534 2606 2604 251 1217 1215 3513 264 814 1585 172 2600 811 170 171 812 1212 2355 649
在这里,L153被看作成上行路线,L673被当成下行路线。这样对于每条公交线路都可以得到两行线路存储信息。
5.2搜寻经过每个站点的公交路线
处理5.1所得信息,找出通过每个站点的所有公交路线,并将它们存入数据文件中。
例如,通过搜寻得出经过站点S0001的线路和经过站点S0002的线路如下:
经过S0001的线路有:L421
经过S0002的线路有:L027 L152 L365 L395 L485
5.3统计任意两条公交线路的相交(相近)站点
依次统计出任意两条公交线路之间相交(相近)的站点,将其存入1040×1040的矩阵A中,但是这个矩阵的元素是维数不确定的向量,具体实现的时候可以将用队列表示。
例如:公交线路L001与公交线路L025相交的站点为A[1][25]={S0619,S1914,S0388,S0348}。
六 模型的建立与求解
6.1模型一的建立
该模型针对问题一,仅考虑公汽线路,先找出经过任意两个公汽站点 与 最多转乘两次公汽的路线,然后再根据不同查询者的需求搜寻出最优路线。
6.1.1 公汽路线的数学表示
任意两个站点间的路线有多种情况,如果最多允许换乘两次,则换乘路线分别对应图6.1的四种情况。该图中的A、B为出发站和终点站,C、D、E、F为转乘站点。
图6.1 公汽路线图
对于任意两个公汽站点 与 ,经过 的公汽线路表示为 ,有 ;经过 的公汽线路表示为 ,有 ;
1)直达的路线 (如图6.1(a)所示)表示为:
2)转乘一次的路线 (如图6.1(b)所示)表示为:
其中:SC为 , 的一个交点;
3)转乘两次的路线 (如图6.1(c)所示)表示为:
通过以上转乘路线的建模过程,可以看出不同转乘次数间可作成迭代关系,进而对更多转乘次数的路线进行求寻。不过考虑到实际情况,转乘次数以不超过2次为佳,所以本文未对转乘三次及三次以上的情形做讨论。
6.1.2最优路线模型的建立
找出了任意两个公汽站点间的可行路线,就可以对这些路线按不同需求进行选择,找出最优路线了:
1)以时间最短作为最优路线的模型:行程时间 等于乘车时间与转车时间之和。
(6.1式)
其中,第k路线是以上转乘路线中的一种或几种。
2)以转乘次数最少作为最优路线的模型:
(6.2式)
此模型等效为以上转乘路线按直达、转乘一次、两次的优先次序来考虑。
3)以费用最少作为最优路线的模型:
(6.3式)
其中, (6.4式)
6.1.3模型的算法描述
针对该问题的优化模型,我们采用广度优先算法找出任意两个站点间的可行路线,然后搜索出最优路线。现将此算法运用到该问题中,结合图6.2叙述如下:(该图中的 、 、 、 、 表示公汽站点, 、 、 、 、 、 表示公汽线路。其中(a)、(b)、(c)图分别表示了从点 到点 直达、转乘一次、转乘两次的情况)
图6.2 公交直达、转乘图
(1)首先输入需要查询的两个站点 与 (假设 为起始站, 为终点站);
(2)搜索出经过 的公汽线路 (i=1,2,…,m)和经过 的公汽线路 ( =1,2, …,n),存入数据文件;判断是 与 是否存在相同路线,若有则站点 与 之间有直达路线(如图6.2中的 ),则该路线是换乘次数最少(换乘次数等于0)的路线,若有多条直达路线,则可以在此基础上找出时间最省的路线;这样可以找出所有直达路线,存入数据文件;
(3)找出经过 的公汽线路 (如图6.2中的 )中的另一站点 和经过 的公汽线路 中的另一站点 。判断 与 中是否存在相同的点,若存在(如图6.2中的 )则站点 与 间有一次换乘的路线(如图6.2中的 与 ),该相同点即为换乘站点;这样又找出了一次换乘路线,存入数据文件;
(4)再搜索出经过 (如图6.2中的 )线路上除了站点 的另一站点 (如图6.2中的 )的公汽线路 (如图6.2中的 ),找出公汽线路 上的其他站点 ;判断,如果 与经过 的公汽线路 中的其他站点 存在相同的点(如图6.2中的 ),则 与 间有二次换乘的路线(如图6.2中的 、 、 ),该相同点和点 是换乘站点;将此二次换乘的路线存入数据文件中;
(5)对上述存储的经过两个站点 与 的不同路线,根据不同模型进行最优路线进行搜索,得出查询者满意的最优路线。
6. 1. 4模型一的求解
根据以上算法和前面建立的模型一,用VC++进行编程(程序见附录)就可以得出不同目标下的最优路线。
1) 以耗时最少为目标的最优路线
起始站S3359到终到站S1828耗时最少为64 min,耗时最少的最优路线(转乘次数较少,费用较省的路线)有28条(注:表6.1选择了其中的10条表示);
起始站S1557到终到站S0481耗时最少为106 min,耗时最少的最优路线有2条;起始站S0971到终到站S0485耗时最少为106 min,耗时最少的最优路线有2条;起始站S0008到终到站S0073耗时最少为67 min,耗时最少的最优路线有2条;起始站S0148到终到站S0485耗时最少为106 min,耗时最少的最优路线有3条;起始站S0087到终到站S3676耗时最少为46 min,耗时最少的最优路线有12条;其耗时最少的最优路线如表6.1所示。
表6.1 耗时最少的最优路线表
起始站 公汽线路 中转站 公汽线路 中转站 公汽线路 终到站 转乘次数 所需费用
S3359 L0535 S2903 L1005 S1784 L0687 S1828 2 3
S3359 L0535 S2903 L1005 S1784 L0737 S1828 2 3
S3359 L0123 S2903 L1005 S1784 L0687 S1828 2 3
S3359 L0123 S2903 L1005 S1784 L0737 S1828 2 3
S3359 L0652 S2903 L1005 S1784 L0687 S1828 2 3
S3359 L0652 S2903 L1005 S1784 L0737 S1828 2 3
S3359 L0844 S2027 L1005 S1784 L0687 S1828 2 3
S3359 L0844 S2027 L1005 S1784 L0737 S1828 2 3
S3359 L0844 S1746 L1005 S1784 L0687 S1828 2 3
S3359 L0844 S1746 L1005 S1784 L0737 S1828 2 3
S1557 L0604 S1919 L0709 S3186 L0980 S0481 2 3
S1557 L0883 S1919 L0709 S3186 L0980 S0481 2 3
S0971 L0533 S2517 L0810 S2480 L0937 S0485 2 3
S0971 L0533 S2517 L0296 S2480 L0937 S0485 2 3
S0008 L0198 S3766 L0296 S2184 L0345 S0073 2 3
S0008 L0198 S3766 L0296 S2184 L0345 S0073 2 3
S0148 L0308 S0036 L0156 S2210 L0937 S0485 2 3
S0148 L0308 S0036 L0156 S3332 L0937 S0485 2 3
S0148 L0308 S0036 L0156 S3351 L0937 S0485 2 3
S0087 L0541 S0088 L0231 S0427 L0097 S3676 2 3
S0087 L0541 S0088 L0231 S0427 L0982 S3676 2 3
S0087 L0541 S0088 L0901 S0427 L0097 S3676 2 3
S0087 L0541 S0088 L0901 S0427 L0982 S3676 2 3
S0087 L0206 S0088 L0231 S0427 L0097 S3676 2 3
S0087 L0206 S0088 L0231 S0427 L0982 S3676 2 3
S0087 L0206 S0088 L0901 S0427 L0097 S3676 2 3
S0087 L0206 S0088 L0901 S0427 L0982 S3676 2 3
S0087 L0974 S0088 L0231 S0427 L0097 S3676 2 3
S0087 L0974 S0088 L0231 S0427 L0982 S3676 2 3
S0087 L0974 S0088 L0901 S0427 L0097 S3676 2 3
S0087 L0974 S0088 L0901 S0427 L0982 S3676 2 3
2) 以转乘次数最少为目标的最优路线
起始站S3359到终到站S1828的最少转乘次数为1次,转乘次数最少的最优路线(所需时间较短,费用较省的路线)有2条;
起始站S1557到终到站S0481的最少转乘次数为2次,转乘次数最少的最优路线有2条与耗时最少的最优路线相同(表示在表6.1中,下同);
起始站S0971到终到站S0485的最少转乘次数为1次,转乘次数最少的最优路线有1条;
起始站S0008到终到站S0073的最少转乘次数为1次,转乘次数最少的最优路线有9条;
起始站S0148到终到站S0485的最少转乘次数为2次,转乘次数最少的最优路线有3条与耗时最少的最优路线相同;
起始站S0087到终到站S3676的最少转乘次数为2次,转乘次数最少的最优路线有6条与耗时最少的最优路线相同;
其余转乘次数最少的最优路线路线如表6.2所示。
表6.2 转乘次数最少的最优路线表
起始站 公汽线路 中转站 公汽线路 终到站 耗时 所需费用
S3359 L0956 S1784 L0687 S1828 101 3
S3359 L0956 S1784 L0737 S1828 101 3
S0971 L0533 S2184 L0937 S0485 128 3
S0008 L0679 S0291 L0578 S0073 83 2
S0008 L0679 S0491 L0578 S0073 83 2
S0008 L0679 S2559 L0578 S0073 83 2
S0008 L0679 S2683 L0578 S0073 83 2
S0008 L0679 S3614 L0578 S0073 83 2
S0008 L0875 S2263 L0345 S0073 83 2
S0008 L0875 S2303 L0345 S0073 83 2
S0008 L0875 S3917 L0345 S0073 83 2
S0008 L0983 S2083 L0057 S0073 83 2
3)以费用最少为目标的最优路线
起始站S3359到终到站S1828的最少费用为3元,最少费用的最优路线(所需时间较短,转乘次数较少的路线)有30条,其中28条路线所需时间为64 min,转乘次数为2次,另外两条路线所需时间为101 min,转乘次数为1次;
起始站S1557到终到站S0481的最少费用为3元,最少费用的最优路线有2条,所需时间为106 min,转乘次数为2次;
起始站S0971到终到站S0485的最少费用为3元,最少费用的最优路线有3条,其中两条所需时间为106 min,转乘次数为2次,另外一条所需时间为128 min,转乘次数为1次;
起始站S0008到终到站S0073的最少费用为2元,最少费用的最优路线有9条,所需时间为83 min,转乘次数为1次;
起始站S0148到终到站S0485的最少费用为3元,最少费用的最优路线有3条,所需时间为106min,转乘次数为2次;
起始站S0087到终到站S3676的最少费用为3元,最少费用的最优路线有12条,所需时间为46 min,转乘次数为2次;
最少费用的最优路线表示在表6.1和表6.2中。
6.2.1模型二的建立
该模型针对问题二,将公汽与地铁同时考虑,找出可行路线,然后寻找最优路线。对于地铁线路,也可以将其作为公交线路,本质上没有什么区别,只不过乘车费用、时间,换乘时间不一样罢了。因此地铁站可等效为公交站,地铁和公交的转乘站即可作为两者的交汇点。因此该模型的公交换乘路线模型与模型一中的基本相同。现建立模型二下的最优路线模型。
1)以时间最短的路线作为最优路线的模型:可行路线的总时间为乘公交(公汽和地铁)时间与公汽与地铁换乘、公汽间、地铁间换乘时间之和。
(6.5式)
其中,第k路线为同时考虑公汽与地铁的转乘路线中的一种或几种。
2)以转乘次数最少的路线作为最优路线的模型:
(6.6式)
此模型等效为以上转乘路线按直达、转乘一次、两次(包括公交与地铁间的转乘)的优先次序来考虑。
3)以费用最少的路线作为最优路线的模型:可行路线的费用为乘公交和地铁费用的总和。
(6.7式)
其中, 仍满足(6.4式)。
6.2.2模型二的求解
不难发现,问题一是问题二解的一部分。在问题二中,新产生的最优解主要源于在通过换乘地铁、换乘附近相近站点的路线上,如下图所示:
从点A到B,图(a)表示的是通过两公交线路上相邻公汽站S1,S2进行一次转乘;图(b)表示利用地铁站进行二次转乘;图(c)表示利用另一条公汽路线为中介进行二次转乘。
铁路线路引入给题目的求解增加了难度,为了形象了解为数不多的两条铁路间的交叉关系,我们通过matlab编程(程序见附录)作出了两条铁路的位置关系图,如图6.3所示。
图6.3 T1与T2铁路位置关系图
注:图四中的直线表示T1铁路线,圆表示T2铁路线,数值表示站点,例如1表示T1铁路线上的D1铁路站,26表示T2铁路线上的D26铁路站。此图与网上查询到的北京地铁示意图(如图6.4所示)相吻合。
图6.4 北京地铁示意图
同样将地铁线路等效为公交线路得出任意两个站点间的可行线路,再将目标函数分别用模型二建立的模型表达式表达,用VC++进行编程(程序见附录)求得出考虑地铁情况的最优路线。
1)以转乘次数最少为目标的最优路线
起始站S0008到终到站S0073的最少转乘次数为1次,转乘次数最少的最优路线有1条;
起始站S0087到终到站S3676的最少转乘次数为0次,即有直达路线,直达下的最优路线有1条;
起始站S0148到终到站S0485的最少转乘次数为2次,转乘次数最少的最优路线有10条;
起始站S0971到终到站S0485的最少转乘次数为2次,转乘次数最少的最优路线有20条(注表6.4中罗列其中10条);
起始站S1557到终到站S0481的最少转乘次数为2次,转乘次数最少的最优路线有17条(注表6.4中罗列其中10条);
起始站S3359到终到站S1828的最少转乘次数为2次,转乘次数最少的最优路线有2条。
2)以耗时最少为目标的最优路线
起始站S3359到终到站S1828耗时最少为64 min,耗时最少的最优路线(转乘次数较少,费用较省的路线)有28条(注:表6.1选择了其中的10条表示);
起始站S1557到终到站S0481耗时最少为109 min,耗时最少的最优路线有17条与转乘次数最少的最优路线相同;
起始站S0971到终到站S0485耗时最少为96 min,耗时最少的最优路线有20条与转乘次数最少的最优路线相同;
起始站S0008到终到站S0073耗时最少为55 min,耗时最少的最优路线有3条;
起始站S0148到终到站S0485耗时最少为87.5 min,耗时最少的最优路线有10条与转乘次数最少的最优路线相同;
起始站S0087到终到站S3676耗时最少为33 min,耗时最少的最优路线有1条与转乘次数最少的最优路线相同;
3) 最少费用的最优路线
起始站S3359到终到站S1828的最少费用为3元,最少费用的最优路线(所需时间较短,转乘次数较少的路线)有2条;
起始站S1557到终到站S0481的最少费用为3元,最少费用的最优路线有17条;
起始站S0971到终到站S0485的最少费用为5元,最少费用的最优路线有20条;
起始站S0008到终到站S0073的最少费用为2元,最少费用的最优路线有1条;
起始站S0148到终到站S0485的最少费用为5元,最少费用的最优路线有10条;
起始站S0087到终到站S3676的最少费用为2元,最少费用的最优路线有1条;
在此种情况下,我们就只考虑可以通过地铁站换乘的情况,不通过地铁站的情况即为模型1的求解结果。模型2的求解结果见附件1。
6.3.1模型三的建立
该模型针对问题三,将步行方式考虑在了出行方式当中,更符合实际。因为当出发点与换乘点、终点站或转乘站与转乘站之间只相隔几个站时,当然该段选择步行方式更优。
因此作出如下假设:
一、如果存在某段路线,其两端点站之间相隔站点数小等于2(即至多经过4个站点),则该段线路选择步行方式到达目的地。其他的情况用模型二来处理。其中路线的两端点站之间相隔站点数是根据公交直达换乘路线来确定的。
二、相邻公交站点(包括地铁站)间平均步行时间为5分钟。
三、如果在公汽线路上选择步行,则公汽间换乘次数减少1;如果在地铁线路上选择步行,则地铁间换乘次数减少1,直达线路除外。
直达和转乘一次、两次的路线需要步行的路段示意图如图6.5所示。图中(a)表示出发点A与终点站B间能直达,相隔的站点数等于2所以选择步行;图中(b)表示出发点A与终点站B间通过一次换乘能到达,其中路段AC的站点数等于2所以选择步行,同样如果CB路段的站点数小等于2,则也采取步行的方式;图中(c)选择步行方式的依据类似。
图6.5 步行示意图
是否选择步行方式的函数:
(6.8式)
其中 表示第m路公交路线是否步行, 表示第n路地铁线路是否步行;
对于直达路线,如果出发点与终点站之间相隔站点数小等于2则步行,否则乘车。对于需要转乘的路线的最优路线模型讨论如下:
1)以时间最短的路线作为最优路线的模型:路线总时间等于乘车时间加上步行时间,再加上转乘时间。
(6.9式)
其中,第k路线为同时考虑公汽与地铁的转乘路线中的一种或几种。
2)以转乘次数最少的路线作为最优路线的模型:每步行一次就少换乘一次车。
(6.20式)
此模型等效为以上转乘路线按直达、转乘一次、两次、三次(包括公交与地铁间的转乘)的优先次序来考虑。
3)以费用最少的路线作为最优路线的模型:
(6.21式)
其中, 仍满足(6.4式)。
七 模型的优缺点及改进
7.1模型的评价
7.1.1 模型优点
1、模型是由简单到复杂一步步建立的,使得更贴近实际。
2、本文的模型简单,其算法直观,容易编程实现。
3、本文模型比较注重数据的处理和存储方式,大大提高了查询效率。
4、本文模型注重效率的提高,通过大量的特征信息的提取,并结合有效的算法,使其完全可以满足实时系统的要求。
7.1.2 模型缺点
在建模与编程过程中,使用的数据只是现实数据的一种近似,因而得出的结果可能与现实情况有一定的差距。
7.2 模型的改进
以上模型主要是从公交线路出发,寻找公交线路的交叉站作为换乘站点,进而找出经过任意两个站点的可能乘车路线。我们也可以从公交站点的角度出发,用图论的方法建立有向赋权图(如图7.1所示),此向赋权图是针对问题三建立的图论模型,问题一、问题二只是此模型的简化。图7.1中 表示公汽线路标号,该线路是公汽线路 的上行线或下行线, 、 、 、 、 、 是公汽线路 上的站点标号; 表示地铁线路标号,该地铁线路是双向行驶的, 、 、 、 、 是地铁线路 上的站点标号;公汽 与地铁 可以在公汽站 和地铁站 间换乘。如果图7.1中的地铁线路替换成公汽线路,为了表示公汽间换乘所需的时间或者费用,应将同一个换乘站点用两个站点来表示。
图7.1 公交线路的有向赋权图
根据不同的目标,给不同的站点间的边赋上不同的权值。然后利用图论的相关算法,找出相应的最短路径。
1)当以时间最短为目标时,给每条边赋上时间的权值。给同一线路上任意两个站点间的边赋值时,其权值等于站点间的公交线路段数与平均时间的乘积。当某段线路的两段点间间隔站点数小等于3时,选择步行,该线路的权值等于步行时间。不同公汽和地铁间进行换乘时需要赋给不同的权值,以表示换乘时间。
例如(如图7.1):
当j4时, 到 的边权值 ;,
从 到 不需要的转车,但根据假设应选择步行,其边权值 ;,
从 到 要么乘公交,然后转车,要么步行,根据步行的假设条件, 到 的站点间隔数小于2,因此选择步行,其边权值 ;,
当g4时, 与 之间的边权值 ;,
到 的边权值 ;
到 的边权值 ;
当j4、g4时, 到 的路径长度为:
;
当 、g4时,则从 到 选择步行,再乘地铁到 ,其路径长度为; ;
找出任意两点间可行路线的路径长度后,再搜索出其中的最短路径的的可行路线作为时间的最优路线。
2)当以费用最省为目标时,则给每条边赋上费用的权值。
公汽站点间的边权按(6.4式)赋值。
当公汽线路 按单一票价计费,对于 上任意两个公汽站点 和 间,
若 ,则选择步行 ;若 ,则 ;
当公汽线路 按分段计价,若 ,则 ;若 ,则 ;若 ,则 ;若 ,则 ;
地铁线路 上任意两个站点 和 间,若 ,则选择步行 ;若 ,则 ;换乘站点 与 间的边权值均为0,即 ;则从 通过站点 换乘 到 的一条可行路线的路径长度为:
若 , ,则从 到 选择步行, ;
若 , ,则 ;
同样可以找出任意两点间可行路线的路径长度,然后再搜索出最短路径作为费用的最优路线。